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Abstract: Internal site search is an integral part of how
users navigate modern sites, from restaurant reserva-
tions to house hunting to searching for medical solu-
tions. Search terms on these sites may contain sensitive
information such as location, medical information, or
sexual preferences; when further coupled with a user’s
IP address or a browser’s user agent string, this infor-
mation can become very specific, and in some cases pos-
sibly identifying.
In this paper, we measure the various ways that websites
send search terms to third parties when a user submits
a search query. We developed a reliable methodology
for identifying and interacting with search components,
which we implemented on top of an instrumented head-
less browser. We used this crawler to visit the Tranco
top one million websites and analyzed search term leak-
age across three vectors: URL query parameters, pay-
loads, and the Referer HTTP header. Our crawler found
that 512,701 of the top 1 million sites had internal site
search, where it successfully interacted with 92.1% of
these and captured over 68 million web requests. We
found that 81.3% of websites containing internal site
search sent our search terms to third parties in some
form. We then compared our results to the expected re-
sults based on a natural language analysis of the pri-
vacy policies of those websites (where available) and
found that about 87% of those privacy policies do not
mention search terms explicitly. However, about 75% of
these privacy policies seem to mention the sharing of
some information with third-parties in a generic man-
ner, which means that the onus is on the reader to
fathom whether such generic wording includes search
terms. We then present our countermeasure: a browser
extension to warn users about imminent search term
leakage to third parties, available for all major browsers.
We conclude this paper by making recommendations on
clarifying the privacy implications of internal site search
to end users.
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1 Introduction
Internal site search is integral to how users discover
and interact with a wide range of web content includ-
ing shopping, travel planning, medical information, and
social network features. Internal search is increasingly
being used by businesses to drive revenue, since 30%
of e-commerce website visitors use internal site search
which contributes to 14% of all revenue [6].

Users may use these search boxes to type in highly
personal terms expressing racial identity, sexual or re-
ligious preferences, and medical conditions. Prior work
has shown how easy it is to de-anonymize users based on
their search terms [46, 70]. In 2012, the US retailer Tar-
get inferred that a young woman was pregnant from her
purchasing habits and search history, and started show-
ing her advertising for baby products, before she was
aware of her pregnancy herself [4]. Alarmingly, Guha et
al. found that advertisers collect and use sensitive data
such as sexual preference for ad personalization: for ex-
ample, nursing college degree ads appeared to target
gay users exclusively [43]. In 2006, after AOL published
a large amount of anonymized search queries, several
participants were completely de-anonymized based on
the uniqueness and specificity of their search terms [3].
Therefore, the secrecy of search terms is paramount to
any reasonable definition of privacy on the web.

A parallel trend shows the increasing proliferation
of third-party scripts and fingerprinting techniques (in-
cluding persistent cookies, tracking pixels, and other
technologies - collectively called trackers) on the web,
mostly for advertising purposes [73]. A 2014 crawl of the
top 1 million websites1 showed ubiquitous user track-
ing: 62.9% of sites spawned third-party cookies, 83.0%
loaded third-party JavaScript libraries (potentially for
browser fingerprinting), and 88% of all sites made a
third-party network request in some form [54]. A follow-
up study in 2019 found the percentage of sites which
track users increased to 90%, despite the introduction
of privacy-protecting legislation in the European Union
at that time [66].

1 using the Alexa top 1 million list [7]
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In this paper, we explore the question of search
privacy by visiting the Tranco top 1 million websites
[52] and performing an automated internal site search.
We developed a crawler on top of a headless browser
which can handle dynamically generated websites, iden-
tify search inputs, and capture outgoing requests. We
then analyzed the content of outgoing requests to deter-
mine whether our search terms appeared in the data or
metadata. In particular, we examine search term leak-
age along three vectors:
1. Leakage via Referer2. Presence of search terms

in the HTTP Referer request header sent to third
parties.

2. Leakage via URL. Presence of search terms in
third-party URLs and query parameters.

3. Leakage via payload. Presence of search terms in
HTTP request payloads sent to third parties.

We discover that 81.3% of visited websites send search
terms to third parties in some form, representing a
potential privacy threat to users. Additionally, despite
many websites having privacy policies, we found the
topic of search term processing was either not explicitly
covered by the privacy policies (about 87% of the time)
or simply ignored by those websites (we were unable to
find a privacy policy for about 50% of sites).

The contributions of this paper are as follows:
1. We present the first large-scale measurement study

on the leakage of search terms via internal web
search, visiting one million websites, intercepting
over 68 million network requests, and discovering
512,701 unique domains with an internal search
functionality.

2. We build a robust methodology to identify search in-
puts across a range of languages during a large-scale
crawl. We use this methodology to collect search
input and search-related element selectors for each
domain. We then open-source this labeled dataset
of discovered search inputs per domain to the com-
munity for further study3.

3. We perform a sophisticated analysis of both natural-
language and P3P-specified [58] privacy policies to
determine if these privacy policies mention process-
ing search terms or sharing some information with
third parties.

4. We provide a framework to characterize the vari-
ous vectors for leaking search terms to third par-

2 original spelling
3 https://jellybeans-paper.com/

ties. Using this framework, we found that 81.3% of
sites send search terms in some form to third par-
ties. By breaking this down according to our vec-
tors, we find that 75.8% of websites send data via
the Referer header (72.5% directly and 10.6% indi-
rectly); 71% via URL query parameters; and 21.2%
via the payload. Additionally, 87.4% of websites had
the potential to send sensitive query terms to a new
third-party if a link on the page was clicked by the
user. Finally, this framework allowed us to identify
those third parties that are actively involved in pro-
viding search results.

5. We develop a browser extension to inform users
about potential privacy leaks via internal search,
based on our findings, which we release 4.

2 Background

2.1 Referer HTTP Header

The Referer HTTP request header is automatically set
by the client (browser) to indicate to a website how
a user found that website. For example, when click-
ing on a link to a New York Times article from the
Hacker News aggregator website, the New York Times
web server would see these HTTP headers by default:

GET /2020/10/15/technology/ignore-phone-companies-5g.html
HTTP/2
Host: www.nytimes.com
User-Agent: Mozilla/5.0 XXX Firefox/80.0
Referer: https://news.ycombinator.com/

The Referer header has been a feature in HTTP
since at least HTTP 1.0 [1]. This first RFC stipulates
that the Referer header may be useful in debugging bro-
ken links, cache optimization, and logging. It also con-
tains a warning about the privacy implications, and sug-
gests that users should have the option to control this
value. This recommendation is also made in the RFC
for HTTP 1.1 [2]. To our knowledge, no major browser
allows users to easily configure this value as suggested.

4 under web store review, which should be complete by camera-
ready deadline
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2.2 Referrer-Policy HTTP Header

The Referrer-Policy response header is set by the web-
site owner, and specifies how the Referer header will
be set upon requests originating from that site. The
Referrer-Policy header has several acceptable values,
which are shown in Table 15.

The referrer policy can be set either in the HTTP
header, in a <meta> tag in the header section of the doc-
ument, or as a noreferrer attribute for a particular link
on the site. It may also be set implicitly via inheritance.

As can be seen from this table, a significant amount
of attention has been paid to not sending Referer values
over insecure (non-HTTPS) channels. It was observed
by the early writers of the specification that the Referer
values may contain sensitive information that man-in-
the-middle attackers may want to steal. Our concern
is however not with man-in-the-middle actors but with
third-parties with resources on a first-party web page.

2.3 Leaking Search Terms via the Referer

The Referer header can therefore accidentally (or inten-
tionally) leak search terms to third parties. This attack
has been previously documented by Libert [53], Krish-
namurthy [50], Malandrino [59], and several others.

A real-world attack scenario is shown in Figure 16.
A user performs a search for “pancreatic cancer” on the
WebMD website. The WebMD server returns a webpage
with the results, which then loads a variety of third-
party JavaScript tracking scripts, including one from
Google Ad Services. When the request is made to fetch
that script from the Google server, the default behaviour
(and the one observed in the wild) is sending the URL
together with the query string, which contains the sen-
sitive search term. The raw request header values can
be seen below7:

GET /pagead/conversion_async.js HTTP/2
Host: www.googleadservices.com
User-Agent: Mozilla/5.0 XXX Firefox/80.0
Referer: https://www.webmd.com/search/search_results/
default.aspx?query=pancreatic%20cancer

In this paper, we use the term search term leak-
age to refer to the transmission of search terms to third

5 These values are taken from the RFC [5]
6 WebMD’s privacy policy includes language suggesting that
search terms may be transmitted to third parties
7 some values were redacted to protect the author’s privacy

Fig. 1. After searching for “pancreatic cancer” on WebMD, when
WebMD loads the Google Ad Service JavaScript file, “pancreatic
cancer” appears in the Referer header.

parties. We note this transmission might be either inten-
tional or accidental with respect to the website owner.

2.4 What is a Third Party?

What constitutes a first party and a third party can be
difficult to define. In this study, we rely on effective Top-
Level Domains as defined in the Public Suffix List [23],
specifically the eTLD+1, so we consider domains that
do not share the same eTLD+1 third parties.

Previous studies have tried to refine this definition
by considering a third-party as “a subdomain of the
main domain whose IP address is registered to a dif-
ferent autonomous system (AS) than the IP address of
the first-party website.” [69] While this approach would
catch those tracking entities that do not want to be
detected, we accept that in some cases our third-party
results might be slightly lower that what they might be
in reality. However, we think that this might be bal-
anced by the fact that in other cases, two domains
that do not share the same eTLD+1 might actually
be owned by the same entity. As mentioned by au-
thors from the W3C Privacy Community Group’s First-
Party Sets work group, “the website the user is inter-
acting with may be deployed across multiple domain
names” [14]. So ideally, when identifying third-party re-
quests, we would like to exclude those domains that may
be owned by the entity that also owns the site that is be-
ing analyzed (e.g. datahug.com and sap.com are part of
the same entity after SAP’s acquisition of DataHug but
nothing in their respective WHOIS records can link one
to the other). While this violates the Origin concept, it
is closer to a user’s mental model of what a website is
and its associated trust relationship. However, we may
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Value Description

no-referrer Referer will be empty
no-referrer-when-downgrade (default
for most browsers)

sends full Referer header value if both this and the target page are HTTPS otherwise sends
nothing

same-origin same origin requests contain full Referer information while no Referer is sent for cross-origin
requests

origin only the origin, not path or query information, are sent
strict-origin same as above, but only for HTTPS pages. Non-HTTPS pages result in no Referer being sent
origin-when-cross-origin cross-origin requests behave as if origin was the specified policy while same-origin requests

behave as if same − origin was specified
strict-origin-when-cross-origin
(default for Safari and Chrome v85+)

same as above, but only for HTTPS pages. Non-HTTPS pages result in no Referer being sent

unsafe-url Full Referer is sent in all contexts. This is generally advised against

Table 1. Referrer-Policy header valid values, derived from the W3C specification [5]. no-referrer-when-downgrade is the default
policy for Firefox, Chrome versions 84 and below, and Edge. strict-origin-when-cross-origin is the default policy for Safari and
Chrome versions 85 and higher [27].

not be able to reliably identify such relationships, since
domain sets which claim to provide this information are
not completely reliable (e.g. WHOIS) or exhaustive (e.g.
Disconnect’s Tracker Protection lists [30]). So for the
purpose of this study, we rely solely on eTLD+1 and
define search term leakage as any transmission of
the search string between different eTLD+1 entities.

2.5 Privacy Policies

To determine whether website operators explicitly in-
form users about sharing their search queries with third-
parties, we examine the privacy policies of websites
(where possible). We investigate both machine-readable
privacy policies (provided by the Platform for Privacy
Preferences (P3P) framework [37]) as well as privacy
policies authored using natural language.

While P3P is officially deprecated and no longer
supported by browsers, it is a machine-readable for-
mat which could help us easily determine whether shar-
ing users’ search terms with third parties is covered
by a website’s privacy policy. According to the P3P
W3C Recommendation [58], the interactive data cat-
egory covers “data actively generated from or reflecting
explicit interactions with a service provider through its
site, such as queries to a search engine.” This defini-
tion precisely corresponds to what we want to measure.
While P3P policies are extremely convenient to parse,
since it is a deprecated standard we expect these to be
infrequent.

Since P3P policies are rarely encountered in the
wild, natural-language privacy policies are increasingly
common. While some jurisdictions do not mandate the

posting of privacy policies, “many individual [US] states
do have this type of legislation. Additionally, the coun-
tries within the European Union (EU) have also en-
acted similar legislation that requires websites that col-
lect personal or identifiable data to post privacy policies
regarding its use.” [16] A recent study focusing on a set
of 6,579 popular websites found that 84.5% of these had
privacy policies [38].

3 Data Collection
In this section, we describe in detail the crawling en-
vironment used to simulate user searches over the
TRANCO top 1M domains8 [31]. In order to complete
this task, we instrumented a headless Chromium-based
browser to visit each domain and detect the presence
of all search inputs contained on the landing webpage.
For each detected search input, the crawler simulates a
real user search by typing the keyword “JELLYBEANS”
into the search input box one character at a time. While
doing so, the crawler simultaneously intercepts all in-
bound and outbound network traffic, request redirec-
tion chains, payloads, and HTML content. We can then
search for our dummy search string in the intercepted
outbound network request data and metadata to detect
search string sharing with third-party entities. To facil-
itate replication, we have open-sourced our crawler 9.

8 We used the list created on April 27, 2020. Available at https:
//tranco-list.eu/list/NYJW.
9 the code for the crawler can be found here: https://jellybeans-
paper.com/

https://tranco-list.eu/list/NYJW
https://tranco-list.eu/list/NYJW
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3.1 Web Crawler

Considering the trade-offs from the crawler categories
minutely discussed in [32], we developed a User Layer
based crawling system built on top of the Puppeteer
headless browser [24], written in TypeScript, which we
call SlicedPie. This architecture was chosen to maxi-
mize the overall accuracy, coverage, and completeness
levels of the crawling process while allowing for some
moderate extensibility. SlicedPie’s design facilitated
simulating real user’s interactions with the browser and
enabled (i) driving Chromium as a full-fledged browser
capable of handling dynamically generated content;
(ii) launching on-demand JavaScript execution tasks;
and still (iii) benefiting from lower level access to the
Chrome Development Tools (CDP) [9] API (through
CDP sessions [25] instantiation).

In terms of computational power, the underlying
system was configured with 32 CPU cores running 64
threads and 800 GB RAM running Ubuntu 18.04LTS
and Linux kernel version 4.15.0-72-generic. This
setup was used to handle more than 100 concurrent
worker-thread [20] instances. Each worker-thread was
initially assigned to process a single input domain URL,
and during its execution process it could run multiple
parallelized browser instances.

3.2 Crawling Stages

The crawling process encompasses four interdependent
crawling stages. Each stage contains additional inter-
mediate steps where data validation and information
extraction tasks are performed in order to reduce error
rates, improve performance, and maximize results cov-
erage. Crawls are scheduled and subsequently parsed by
a crawler manager (main thread), and the collected data
is primarily stored in a NoSQL database, with records
larger than 16MB being offloaded to disk.

3.2.1 Preflight Request (Stage I)

In this stage we perform a preflight request using Node
fetch [11] to confirm the URL’s availability. Common
system errors such as DNS failures are captured at this
stage and therefore prevent further stages from execut-
ing. Additionally, we implement a mechanism to handle
timeouts to circumvent the fetch API’s inability to per-
form as expected [12].

Fig. 2. Crawler Architecture. Stage I (Preflight Request), Stage II
(Extracting HTML), Stage III (Detecting Search Functionality),
Stage IV (Simulating User Search)

3.2.2 Extracting HTML (Stage II)

During this stage the HTML text is extracted and anal-
ysed in order to:
– Detect additional languages. The HTML lan-

guage attribute [18] is extracted from the HTML
text body in an attempt to identify additional lan-
guages present in the page structure. Each addi-
tional language found (apart from English) is used
in Stage III to generate additional selectors.

– Detect embedded search functionalities. Web-
sites may contain embedded search capabilities[28].
These share a common structure [17] such that
they can be detected using a regular expression and
parsed into a search URL like http://example.com/
?s={search-term-string}. Thus, as an additional
step of this stage we try to identify and extract the
search endpoint URL from the HTML string. Using
this method, we discover that 8.5% of crawled sites
rely solely on this search functionality.

– Collect all hyperlinks found in the page, in-
cluding those pointing to privacy policies.
The identification of privacy policy links is de-
scribed in Section 3.5.

3.2.3 Detecting Search Functionality (Stage III)

In order to detect search functionalities, we first rely on
a list of query selectors [26] to identify all elements on
a Web page that contain the keyword search as part of
their attributes. While English is the default language
used, the keyword varies according to any additional
language detected during stage I. In order to use quality
translations for the term search, we leveraged transla-
tions from Mozilla’s Firefox Translation Project [13].

The list of elements is subsequently filtered and
bucketed into two unique query selector lists of search

http://example.com/?s={search-term-string}
http://example.com/?s={search-term-string}
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inputs and search-related elements. Search inputs repre-
sent all elements into which it is possible to enter text. In
the search-related inputs category fall all other HTML
elements (for example: div, li, span, etc.) that can-
not be used to perform a search but indicate via their
attributes that they are somehow related to search func-
tionality.

3.2.4 Simulating User Search (Stage IV )

All information gathered during previous stages is used
here to define a strategy to simulate a search. There are
two base approaches to do so:
1. Search Inputs. If the element is of type input, the

approach is to visit the page, locate the element,
simulate the user typing the keyword “JELLY-
BEANS” followed by the return key.

2. Embedded Search URL. If an embedded search
URL has been identified and extracted during Stage
II, it is used to conduct a search. In this case the
keyword is added as an input parameter while the
page is visited using a URL in the format of http:
//example.com?s=JELLYBEANS.

3.3 Challenges and Edge Cases

The SlicedPie crawler can deal with a number of
challenging situations that arise in the wild including
dynamically-generated element attributes, interstitials,
hidden search inputs, and search results displayed in an-
other tab. The mechanics of our solutions for these are
detailed in the Appendix.

3.4 Crawl Summary

Table 2 outlines the results of our crawl. In summary,
we tried to crawl 1 million sites but 15.7% of those gen-
erated errors preventing us from determining whether
the site might contain a search component. For 32.9% of
the remaining sites, we were unable to detect any search
component. This left us with 512,701 sites, where our
search simulations succeeded 92.1% of the time.

3.5 Collecting Privacy Policies

To determine whether users are notified about the leak-
age of their search terms to third parties, we also col-

Error Code Description Domains

PREFLIGHT ERR Preflight request failures due to
DNS, invalid HTTP Status Code
(4xx or 5xx), and timeouts.

157,357

NO INPUTS FOUND No elements suggesting the
presence of search functionality
on the page were detected.

329,942

INVALID INPUTS Search was attempted but dis-
covered elements were not inter-
active (could not input text and
simulate user interaction).

40,368

SUCCESS At least one interactive element
was found and used to complete
the search simulation.

472,333

Total 1,000,000

Table 2. Crawl Summary.

lected the machine-readable and natural-language pri-
vacy policies (where possible) using our instrumented
crawler SlicedPie. Machine-readable policies are easily
collected using the P3P HTTP header (where present).
To collect natural-language policies, we followed the fol-
lowing two-step approach:
1. Privacy Policy Link Identification

– Check page links in reverse order
– Use English terms
– Use detected language terms if required

2. Privacy Policy Document Retrieval
– Perform simple GET request
– Use headless browser if simple GET request fails

to retrieve enough content
– Perform PDF to text conversion if required

Our first step follows the approach proposed in [55].
However, our keywords are not limited to English. While
English is the default language used, the keywords vary
according to any additional language detected during
the HTML extraction presented in Figure 2, once again
leveraging translations from Mozilla’s Firefox Transla-
tion Project [13].

4 Results
In Section 3, we successfully executed a search for our
dummy query string, “JELLYBEANS“, on 472,333 web-
sites and captured the outgoing network requests with
our crawler. In this section, we analyze the collected
data and categorize the observed privacy leakages using

http://example.com?s=JELLYBEANS
http://example.com?s=JELLYBEANS
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the ontology presented in Figure 3, inspired by Starov
et al. [69].

Fig. 3. Types of privacy leakages analyzed

While Starov et al. categorized privacy leakages as
intentional or accidental, we think it is quite difficult
to be confident whether a leakage is one or the other.
Instead, we analyze leakages using several criteria. First,
we focus on the mechanism by which the search query
was leaked, be it via the Referer HTTP request header,
via a URL query parameter or via the actual payload
of the HTTP request. We further classify Referer-based
leakages depending on whether our dummy query string
appears in a Referer header that was either directly sent
by the analyzed site or indirectly by one of the site’s
third-parties.

Finally, we classify leakages depending on whether
they actually occurred during our crawl, or whether
they could potentially occur if the crawl’s scope was
expanded. Since we analyze the document containing
the search results, we inspect all links present on that
page to determine whether further leakages might occur
if these links were followed.

Also, we break down the results in the payload cat-
egory using additional criteria. Since we observed some
large request payloads in our dataset, we suspect some
of them may contain our search query, but that is not
necessarily easy to confirm since some of these payloads
are encoded.

All of our results are based on the number of sites
where our crawler was able to execute a search without
encountering any error. As presented in Table 2, this
number is 472,333. It should be noted that two or more
sites may redirect to the same domain. While the fi-
nal number of distinct response domains is 447,428, we
report all of our results based on a total of 472,333.

4.1 Leakage via Referer

Our dummy query was leaked via the Referer header by
75.8% of the sites, be it directly or indirectly. The exam-
ple in Listing 1 shows both scenarios when conducting
a search on the www.autoguide.com site. The first part
of the example shows a request to a third party domain
(ib.adnxs.com) with our search query present in the Ref-
erer header. Subsequently, our query string appears in
the Referer header of a request to sync.placelocal.com
even though this third party domain was never con-
tacted directly by www.autoguide.com. This flow is vi-
sualized in Figure 4.

{'url': 'https://ib.adnxs.com/ut/v3/prebid',
'resourceType': 'xhr', 'headers':
{'sec-fetch-mode': 'cors', 'referer':
'https://www.autoguide.com/search.html?q=JEL c
LYBEANS', 'payload':
'...'}}

↪→

↪→

↪→

↪→

↪→

...
{'url': 'https://sync.placelocal.com/openadid=864 c

616440172932000;redirect=https%3A%2F%2Fsync. c
placelocal.com%2Fsyncdatapartnersimg%3F0bypa c
sssync%3D1%26blob%3Dcdc4c4f81e1770430aea8361 c
0fd967e8%253Aef9dc7a0939e092d667bc27fbf9dc57 c
060a97d39dfb6f590dd1cb76e2dbfa57e6fc69c7ec6c c
fd67ef623c6836288b87e', 'resourceType':
'image', 'headers': {'referer':
'https://tag.placelocal.com/ad/iframe?...auc c
tionid=1789060303328245535&refurl=https%253A c
%252F%252Fwww.autoguide.com%252Fsearch.html% c
253Fq%253DJELLYBEANS...'}}

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Listing 1. Examples (shortened) of referrer-based leakages

4.1.1 Direct leakage

72.5% of sites directly send our query string to at least
one third party domain via the Referer header. This is
due to the fact that most sites do not set any page-
level Referrer-Policy, be it using a response header or
an HTML directive (using a meta element). The most
frequently observed pairs of policy values are shown in
Table 3.

It is interesting to note that the most frequently
used values are ineffective at preserving users’ privacy.
no-referrer-when-downgrade is often never relevant,
as most of today’s traffic is relying on HTTPS and
downgrades are uncommon. always is not a valid policy
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Fig. 4. Crawler searches for “JELLYBEANS” on site A. A then passes this search query to A’s child iframe B. A then makes a net-
work request to C and “JELLYBEANS” is leaked to C via the Referer header. B makes a request to D, where B inserts “JELLY-
BEANS” into the URL. Thus in this example “JELLYBEANS“ is leaked to three domains (B, C, D) via two different methods (Referer
header and URL).

Rank Header Policy Meta Policy Frequency

1 None None 93.6%
2 no-referrer-when-downgrade None 3.2%
3 (empty string) None 1.4%
4 None always 0.6%
5 None unsafe-url 0.4%
6 unsafe-url None 0.2%

Table 3. Most frequent page-level Referrer-Policies, as specified
in the HTTP response header and the HTML meta element.

and unsafe-url is discouraged except in specific use-
cases, as shown in Table 1.

4.1.2 Indirect leakage

As shown in Listing 1, leaks via Referer can also occur
indirectly when a third-party domain is contacted by an-
other third-party domain. This situation was observed
for 10.6% of the sites, with the most prevalent domains
(and their associated entities based on the Disconnect
list[30]) shown in Table 4.

This table shows that many of these domains are
classified as tracking entities according to the Discon-
nect list. However, some domains, such as those asso-
ciated with Google, may be more ambiguous as they
might deliver actual search results via a custom search
engine (cse.google.com) [15]. This possibility is explored
in Section 4.3.

4.1.3 Potential leakage

To conclude this analysis of Referer-based leakages, we
are interested in examining those links present on search
results pages that would leak the search query to a third-
party domain, if those links were clicked by the user (if
the query would not previously have been leaked to any
of these third-party domains). To determine whether
a link would leak or not, we analyzed the page-level

Domain Entity Frequency

google.com Google 3.3%
fonts.googleapis.com None 2.6%
google-analytics.com Google 1.8%
moatads.com Moat 1.7%
gstatic.com Google 1.6%
2mdn.net Google 1.6%
quantserve.com Quantcast 1.5%
quantcount.com None 1.5%
doubleclick.net Google 1.1%
googletagmanager.com None 1.0%
www.googleapis.com None 1.0%
facebook.net Facebook 0.8%
adsafeprotected.com Integral Ad Science 0.7%
doubleverify.com DoubleVerify 0.7%
yahoo.com Yahoo! 0.7%
iasds01.com Integral Ad Science 0.7%
flashtalking.com Flashtalking 0.6%
googlesyndication.com Google 0.5%
googletagservices.com Google 0.5%
ajax.googleapis.com None 0.5%

Table 4. Most frequent domains present in indirect referrers.

referrer policies (as shown in Table 1 but also element-
level policies that may be present. We found that links
with the potential to leak the search query occurred for
87.4% of sites.

The results in Table 5 show that the most preva-
lent domains in links on search results pages are linked
with social media services (e.g. Facebook, Twitter, In-
stagram, Youtube, Linkedin and Pinterest). A generic
link shortening service is also present in that list (bit.ly).

4.2 Leakage via URL

71% of sites send our search query as part of URL
query parameters. As shown in Listing 1, however, a
URL query parameter may contain the full search page
URL rather than the actual query. Distinguishing these
two scenarios seems important because some of our ob-
servations (that could be qualified as leakages) may be
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Domain Entity Frequency

twitter.com Twitter 44.8%
facebook.com Facebook 38.3%
instagram.com Facebook 34.2%
youtube.com Google 29.2%
linkedin.com LinkedIn 15.8%
pinterest.com Pinterest 9.0%
google.com Google 8.8%
wordpress.org None 5.7%
apple.com None 4.0%
vk.com VKontakte 2.0%
t.me None 1.9%
bit.ly None 1.8%
vimeo.com Vimeo 1.5%
flickr.com Yahoo! 1.5%

Table 5. Most frequent domains from links on search results
pages.

absolutely necessary for the search functionality to be
delivered to the user. For instance, if a website is rely-
ing on a third-party search engine provider (be it Google
Custom Search Engine or any other service), our search
query may be passed on directly to that third-party us-
ing technologies such as AJAX. In order to address this
scenario, we try to identify those domains that receive
specific query parameters (such as q or query) with our
query string (or parts of it) as the value. By observ-
ing whether URL parameter values contain substrings
of “JELLYBEANS”, such as q=J or q=JE (which is the
case when services provide auto-complete suggestions),
we can reliably identify actual third-party search engine
providers. Table 6 shows the most common domains we
are able to identify using this strategy. Some of them
are associated with Google, but others may not be as
well-known. However, manually checking the twenty five
most frequent domains confirms that they actually are
search services that can be added to websites such as
content management systems.

4.3 Leakage via Payload

Finally we are interested in examining whether sites leak
search queries with third parties via the HTTP request
payload. We find that 21.2% of sites actually do, the
most prevalent third parties being listed in Table 7.

This list is quite varied since it contains social me-
dia entities (e.g. Facebook, Twitter), advertizers (Feder-
ated Media), analytics services (sumo.com, Google An-
alytics) and actual search service providers (algolia.net)
identified using the methodology described in the previ-

Domain Sites Frequency

google.com 5063 0.01%
yandex.ru 692 0.0014%
searchanise.com 609 0.0012%
wikipedia.org 453 0.0009%
wiktionary.org 444 0.0009%
ksearchnet.com 284 0.0006%
doofinder.com 260 0.0005%
mybcapps.com 241 0.0005%
nextopiasoftware.com 237 0.0005%
searchspring.net 236 0.0004%
addsearch.com 223 0.0004%
cludo.com 207 0.0004%
searchspring.io 166 0.0003%
swiftype.com 156 0.0003%
resultspage.com 151 0.0003%
... ... ...
algolia.net 18 0.00003%

Table 6. Most frequent domains identified as search results
providers after receiving query parts via specific URL query pa-
rameter

Domain Entity Frequency

facebook.com Facebook 7.1%
hotjar.com Hotjar 3.8%
adnxs.com AppNexus 2.6%
criteo.com Criteo 1.5%
pubmatic.com PubMatic 1.5%
twitter.com Twitter 1.0%
lijit.com Federated Media 0.6%
sumo.com None 0.6%
google-analytics.com Google 0.6%
flashtalking.com Flashtalking 0.6%
algolia.net None 0.5%

Table 7. Most frequent domains receiving query via payload.

ous section. It is also worth highlighting the presence of
hotjar.com, which provides session replay capabilities to
site owners as reported in [40]. A deeper analysis of the
request payloads (as well as the responses) should allow
us to identify specific entities (e.g. search providers) as
we did in the previous section using specific query pa-
rameters.

To conclude this analysis, we report that 0.9% of
sites make use of third parties that rely on Base 64-
encoded payloads that we were able to decode in order
to detect our search query. We also report that some re-
quests contain unusually large payloads (over 10kb per
request), most often sent to entities that offer session re-
play services, like yandex.ru, hotjar.com, fullstory.com,
smartlook.cloud, clicktale.net, quantummetric.com, ses-
sioncam.com or inspectlet.com.
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4.4 Analysis of Privacy Policies

Now that we have observed how sites leak search queries
to third parties, we want to determine whether this is
a practice that website operators explicitly mention to
their users. In order to measure how often website oper-
ators in fact include this type of data leakage in privacy
policy documents, we analyze both machine-readable
(P3P) and natural-language privacy policies.

4.4.1 Machine readable policies

We find that 4.5% of all sites use the P3P response
header to communicate some of their data handling
practices. When we exclude sites that do not leak our
search query, we still observe 4.4% of sites using this
header. Focusing specifically on those sites which men-
tion both interactive data and third parties, however,
we find that the number goes down from 4.4% to 1.3%.

4.4.2 Natural language privacy policies

4.4.2.1 Identifying Privacy Policy Documents
Using our approach from Section 3.5, we were able to
find privacy policy links on 50.5% of input domains (we
only considered those sites leaking our search query to
at least one entity). While this number may seem quite
low, it is not unexpected given we relied on a fully au-
tomatic link identification approach. Previous work has
shown that a word-list approach can work for specific
site types (such as news) but miss links on other sites,
thus requiring a complementary manual identification
step [38]. Using such a manual step was not feasible
based on the size of our dataset.

Using the identified links, we were able to retrieve
some content 96.5% of the time. However, while the key-
words used in our first step are generally a good indica-
tor that the linked content is an actual privacy policy,
there is no guarantee that this is always the case. For
example, some sites rely on intermediate pages to guide
users towards a relevant privacy policy if they have more
than one (e.g. one per product, or one per platform). So
while the link identified might point to a page contain-
ing the word privacy, there may actually not be any
actual privacy policy content in it.

Previous studies have used some heuristics such as
keyword spotting to justify their scraping [55], but we
think this is too prone to errors. We therefore decided to
train a classifier to filter out any content that does not

appear to contain any privacy policy content. To do so,
we used the sanitized OPP-115 corpus [76] as training
data and relied on a one-class SVM classifier (RBF ker-
nel with gamma set to auto) to perform outlier detection
using the Scikit-learn framework [63] whose implemen-
tation is based on Libsvm [35]. Using a very small nu
value (0.05) to reduce the number of training errors to
a minimum, we extracted TF-IDF features (n-grams in
the range 1-3) after removing English stopwords from
the content. The resulting model detected 4 documents
from our training set as outliers, and when applied to all
of the 127,996 English policies retrieved detects 37.9%
of them as outliers. This might be very conservative but
ensures that we are looking for search-related mentions
in the appropriate content.

To validate our model, we manually sampled 100 of
the 79,515 English documents labelled as privacy poli-
cies by our model and found that all of them were in-
deed privacy policy documents. Our pipeline is almost
directly comparable to the one described in [56] which
achieved a privacy policy link candidate detection rate
of about 43% (ours is 50.5% with duplicates and 44.7%
after removing duplicates) and an actual privacy pol-
icy document detection rate of about 15% using a CNN
(ours is 20.7%). Our results are summarized in Table 8.
We also make available all discovered privacy policy
links to future researchers 10.

Description Count

Input domains 384101
Domains with policy link identified 193815
Link found but scraping error 6703
Link found and scraping success 187112
Uniq. links with document 165139
Uniq. documents detected as English 127996
Uniq. English docs labelled as privacy policies 79515
Uniq. English docs including search-related terms 10914
Uniq. English docs including generic info. sharing 60212

Table 8. Analysis of privacy policies statistics. Only domains with
observed search term leakage were used as input domains.

4.4.2.2 Parsing Privacy Policies
To investigate whether websites inform users of the fact
that their search queries may be sent to third parties,

10 https://jellybeans-paper.com
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Source Category Text Match type

1582_msn.com.csv Third Party Sharing and
Collection

results page URL (which may contain your search query) explicit

1099_enthusiastnetwork.com.csv Third Party Sharing and
Collection

the pages you visit, and which links you click, which ads
you see and click on, and the categories of search terms
you enter

explicit

1703_sports-reference.com.csv First Party Collection
and Use

SRL may record information identifying the visitor or link-
ing the visitor to the search performed.

explicit

105_amazon.com.csv Third Party Sharing and
Collection

search term and search result information from some
searches conducted through the Web search features

explicit

1300_bankofamerica.com.csv Third Party Sharing and
Collection

certain information about your activities on our Sites,
such as pages visited and search key words entered

explicit

1034_aol.com.csv Data Retention Information about your interactions with the websites,
apps, and other services you use, the content you view,
the search queries you submit,

explicit

1089_freep.com.csv Third Party Sharing and
Collection

We may share technical or aggregate information about
your interaction with our Site, such as type of pages
viewed and categories of interest, from our Site with
these service providers

generic

856_sciencemag.org.csv Third Party Sharing and
Collection

We may share information, such as your IP address, with
third parties as might be required for technical purposes

generic

686_military.com.csv Third Party Sharing and
Collection

We may share your information with third parties who
help us in the delivery of our own products and services
to you

generic

1070_wnep.com.csv Third Party Sharing and
Collection

We may share your information with third-party adver-
tisers and advertising networks or others with which we
have a contractual relationship

generic

175_mlb.mlb.com.csv Third Party Sharing and
Collection

A permitted network advertiser may use cookies, web
beacons or similar technologies to collect information
about your interaction with our Services

generic

Table 9. Examples of relevant OPP-115 corpus fragments.

we must parse the extracted privacy policies and find
sections relevant to processing search terms.

Since search queries are instances of personal in-
formation (rather than personally identifiable informa-
tion), we would expect privacy policies to mention them
in sections pertaining to personal data collection or
handling. In order to verify this hypothesis, we manu-
ally check the annotations from the OPP-115 corpus to
find occurrences of phrases containing the token search.
While we find such mentions in the corpus (as shown in
Table 9), we notice that search queries collection is ex-
plicitly mentioned in segments labelled as “First Party
Collection/Use” by the OPP corpus annotators more
frequently than segments labelled as “Third Party Shar-
ing/Collection” (24 vs. 11). A closer inspection of these
“Third Party Sharing/Collection” segments reveals that
some vague or generic phrases are used to inform the
reader that some of their information (without neces-
sarily specifying which) may be shared with third par-
ties. Examples of such generic phrasing is also shown in
Table 9.

Based on this discovery, we decided to manually re-
view all 672 segments (originating from 112 distinct pri-
vacy policies of the OPP-115 corpus) to identify those
that seem to mention (either explicitly or implicitly) the
collection by a third party of information (such as search
queries) or the sharing of such information with a third
party when the user interacts with the site. The results
of this manual review are as follows: 116 segments seem
to mention such a practice (labelled as “yes”) while 462
do not (labelled as “no”) and for 94 segments, we are
unable to decide (labelled as “unsure”).

We further examined these 116 “yes” segments to
extract the sentences (or parts of sentences) that refer
to the sharing of information with a 3rd party. Once
these parts were identified, we defined patterns using
morphological and syntactic information with a view to
create detection rules of such mentions in newly col-
lected privacy policies. We use rules instead of a ma-
chine learning approach due to the small amount of la-
belled data (116 sentence parts). These rules were im-
plemented using Spacy’s entity ruler [45] so that a sen-
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tence was deemed to mention information sharing with a
third party if it contained the following elements: a third
party (which may also be described using words such as
vendor or partner, a verb describing the act of sharing
or collecting, such as disclose or gather, and a reference
to information or data. In order to avoid some false
positives in specific contexts (such as information shar-
ing with law enforcement entities or information trans-
fer in the event of a corporate merger), we penalized
sentences containing specific terms. These rules showed
an accuracy of 89% when run on the annotated seg-
ments from the OPP-115 corpus. We then used these
rules on the 79,515 privacy policies we collected and
found that 60,212 of them (about 75%) contained at
least one mention of information sharing with a third
party. An example of detection of a generic mention is:
“These third-party ad servers or ad networks can use
technology which displays the advertisements that ap-
pear on our site directly to your browser, enabling them
to collect information.”11 10,914 of these policies (about
13%) did mention search terms explicitly, an example
being: “We and our service providers and third-party
advertising partners also use these technologies to track
your activities on our Site and other websites, includ-
ing the websites and web pages that you visited, the
ads or content that you clicked on, any items you may
have purchased and the search terms you used, in order
to deliver tailored advertising to you.”12 These results
must be considered as upper bounds since our detection
rules can still be prone to false positives.

To validate our detection results, we read 12 of the
100 validation documents manually and confirmed our
automated approach did not find any mention of users’
search terms in this sample. However, 2 of these 12 doc-
uments contained some mention of user interaction with
some services and 8 other documents in the sample did
mention users’ usage of the site/services, which could
encompass the use of the search functionality.

These results suggest that privacy policies tend to
be worded in such a way that search query handling by
a third party is very often described in a very generic
manner. This means that users who are looking for an
answer to the question are my search terms shared with
or collected by a third party? will have to carefully read
the entire privacy policy (or specific sections of it) to
find such information (instead of simply searching for a
keyword like search using a browser shortcut). In prac-

11 http://www.miicharacters.com/privacy.php
12 https://www.audi-forums.com/help/privacy

tice, this means that most users will not have the time
to perform such a careful review and will be unaware
that their search terms won’t be kept private by the
site they are interacting with. This is something we de-
cided to address by designing a novel browser extension,
as described in Section 5.4 on countermeasures.

5 Discussion

5.1 First Party Categorization

We used a proprietary tool to group the domains ac-
cording to their content category to determine if pri-
vacy leakage varies across website categories. These re-
sults can be seen in Figure 5. By and large, the worst
offenders were “Personal Sites” (92.2% Any), which is
consistent with the findings of [33]. The other categories
of bad actors were “Restaurants/Dining/Food” (88.1%)
and “Shopping” (86.7%), which might be consistent
with sites that are most likely to have the most ad-
vertising. Interestingly, some of the most well-behaved
sites were sites categorized as “Piracy/Copyright Con-
cerns” (77.6%), “Suspicious” (77.5%), and “Pornogra-
phy” (77.7%). This may be because these sites exist
outside the usual ad ecosystem that powers the con-
ventional web, as documented by [71].

Finally, the “Search Engines/Portals” category iron-
ically had the lowest value for Direct Referrer leaks
(55.3%), possibly because these tend to be large sites
whose central focus is search, and are no doubt aware
of the sensitivity of search terms and are careful against
this data leaking into the hands of competitors.

5.2 Expert Opinions on Privacy Policies

To determine the accuracy of our analysis above, we
spoke to several legal professionals to determine how
they might craft privacy policies and what language
might be included to cover search terms. The legal pro-
fessionals with whom we consulted told us that there
is no standard way to write a privacy policy (though
in practice one of a handful of templates are typically
used). They further stated that search terms are usu-
ally not explicitly covered by privacy policies, and are
often grouped under more general terms such as “site
interaction”. Finally, these legal professionals disagreed
on whether the GDPR and CCPA regulations specifi-
cally covered search terms. One prominent privacy legal

http://www.miicharacters.com/privacy.php
https://www.audi-forums.com/help/privacy
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Fig. 5. Leakage breakdown by category and leakage type

expert told us he did not view search terms coupled
with an IP address as personal information, showing a
disconnect between the sensitivity of search terms as
demonstrated by computer science research, and the in-
terpretation of current law by the legal community.

When asked, “How might an average user determine
if search terms are covered by a site’s privacy policy?”,
our experts were pessimistic. They re-iterated that pri-
vacy policies are generally written in broad terms, and
agreed that they tend to be quite long (in 2008, an av-
erage privacy policy took 10 minutes to read and this
number is likely larger today as privacy policies have
only grown in scope [61]). They said that users might
look for specific phrases, similar to the ones extracted
in Section 4.4.2.2.

5.3 Findings

As mentioned in Section 4, we successfully executed a
search for our dummy query string, “JELLYBEANS”,
on 472,333 websites. 81.3% of these leak search terms to
third parties in some form, according to our definition
of leakage in Section 2.4. 75.8% of websites leaked data
via the Referer header (72.5% directly and 10.6% indi-
rectly); 71% via URL query parameters; 21.2% via the
payload. Additionally 87.4% of websites had the poten-
tial to leak sensitive query terms to a new third-party
if a link on the page was clicked.

The high incidence of leakage via the Referer header
is likely related to the fact that over 93.6% of sites
did not explicitly specify a Referer-Policy, and when
they did it was either at the same level or worse
than the default. After we completed our crawl, the

Google Chrome team announced that starting with
Chrome version 85, the default Referer-Policy will be
strict-origin-when-cross-origin [19]. This change
should have a significant positive change on the privacy
of users on the web, especially if adopted by the other
major browsers 13.

Most sites leaked search terms through more than
one vector. This is extremely concerning, as often times
these search terms refer to sensitive topics such as med-
ical conditions, sexual preferences, racial identity, or fi-
nancial situation. Even for seemingly innocuous cases
such as shopping, products can reveal sensitive informa-
tion about users - consider products such as pregnancy
tests, wedding bands, or anti-anxiety medication.

5.4 Countermeasures

First, some browsers such as Chrome v85+ and Sa-
fari have changed their default Referrer-Policy to the
more secure “strict-origin-when-cross-origin” value. We
would like other popular browsers (such as Firefox, QQ
Browser and Edge) to adopt this default, and have stan-
dards bodies such as W3C change the guidance for
browsers to make this the default value. We would also
like to see tracking protection tools (such as those built
into Firefox) flag sites that downgrade the Referrer-
Policy using a server-side header or HTML, and prevent
that behavior when tracking protection has been turned
on by the user. We would also like website maintainers
to acknowledge privacy leakage through this vector, and

13 Chrome is estimated to control 66% of all browser market
share [8]
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sites to be held accountable for the fact that this privacy
leakage is not present in their privacy policies using the
GDPR privacy framework or other legal standards. Fi-
nally, we would hope for a technology similar to Content
Security Policies (CSPs) that deals with sharing of user
data to third-parties, which would be enforced by the
browser and could be inspected by automated tools.

In the meantime, we developed a browser exten-
sion which displays our findings for each crawled site,
as shown in Figure 6. This extension also links to the
privacy policy where possible.

Fig. 6. JellyBeans browser plugin warning a user when they at-
tempt to use internal search.

5.5 Limitations

Crawling Limitations. During the crawl process, we
failed to visit 15.7% of domains, which is roughly in line
with the expected results in [32]. However, we made few
efforts to circumvent IP-blocking or solve CAPTCHAs
during our crawl. Some other teams use Tor to evade IP-
blocking, while others employ anti-crawling-detection
stealth toolkits. We do not believe such approaches are
consistent with the spirit of the web, and allowed for
such failures. However, it may be the case that these
15.7% of websites differ in some key characteristics from
the ones that we successfully visited.

We made every effort to locate the correct internal
search inputs on every website regardless of language.
However, our approach was not perfect. For example,
we only visited the landing page of each webpage, and
did not navigate the site to search for the internal search
feature on other pages. We anticipate future work will
improve on our approach and be able to find more search
inputs. For this reason, we will release the labeled corpus
of detected search input selectors for each domain under
open source for other researchers to use.

Analysis Limitations. During our analysis, we
found some cases of large payloads sent to third party
sites, which appeared to be encrypted or encoded, and
which we suspected contained the “JELLYBEANS”
search string. We utilized Ciphey to try to decode all
large payloads, but sometimes were not successful [10].

Therefore, the payload leakage may in fact be higher
than reported in this paper.

In addition to privacy policies, some sites also have
a cookie policy document or a cookie banner. While we
looked for mentions of search term handling and infor-
mation sharing in privacy policies, we did not analyze
these cookie-related documents. However, we do not be-
lieve that this would substantially change our results.

6 Related Work
Crawling for Privacy Leaks. The use of web
crawlers to measure privacy leakages is ubiquitous in the
literature: a recent survey paper by Ahmad et. al. [32]
found that 350 papers published at top-tier venues from
2015-2020 relied on data gathered from web crawlers.
These web crawlers were most often implemented as
headless browsers on top of the PhantomJS [22], Se-
lenium [29], Mozilla OpenWPM [21], or Puppeteer [24]
frameworks. Such crawlers were often deployed in large-
scale scans to discover privacy leakages around the web,
often using either the Tranco [31] or the Alexa [7] top do-
main datasets as inputs. The resulting studies measured
privacy leakages found in email tracking [41], link track-
ing [65], third-party cookies [66], the ad ecosystem [42],
HTTP headers [51], contact forms [69], and registra-
tion forms [36]. Many other crawls characterized privacy
leakages (often by looking at domains of third-party re-
quests) more broadly on the web [33, 50, 54, 55, 68], or
in specific sectors such as adult websites [60, 71], health
websites [53], online collaboration services [47], and the
financial sector [64]. Ahmad et al. noted that challenges
exist in crawling the web in an automated way: only
approximately 77-93% of the top 500 domains can be
successfully reached by a crawler 14, including block-
ing due to regional restrictions, IP-based blocking, and
encountering CAPTCHAs.

Privacy of the Referer HTTP header. The
Referer HTTP header has been known to be a poten-
tial source of privacy leakage since at least 2011 [39, 50].
The Referrer-Policy HTTP header was specifically cre-
ated for website owners to control the leakage of the
referrer [39]. The issue of potentially sensitive queries
being leaked in referrer values was showcased by Krish-
namurthy et al. using the example of searching for pan-
creatic cancer on a health information website, and hav-

14 depending on the crawler used
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ing that search string transmitted to third parties [50].
Similar examples were shown in work done by Libert
in 2014 [53]. Lavrenovs et al. demonstrated in 2018 that
the Referrer-Policy HTTP header was only explicitly set
in 0.05% of HTTP responses and 0.33% of HTTPS re-
sponses [51], though this work looked at HTTP headers
only, while the policy may also be set inside HTML. In
2017, Dolnak characterized the Referrer-Policy HTTP
header status of 7 million websites and suggested 56%
of those websites might leak sensitive queries via the
Referer HTTP header[39].

Search Privacy. Search queries, especially over a
longer time period and associated with a specific IP ad-
dress, are well-known to lead to significant loss of user
privacy. Jones et al. showed that search queries can be
used to efficiently de-anonymize users [46]. White et al.
showed that it was possible to use search queries to di-
agnose neurodegenerative disorders [75]. Libert showed
that health terms in medical search engines were leaked
in 2014 [53]. However, Libert started his analysis by
searching for likely medical terms using popular search
engines, and then analyzed the resulting 80,142 pages
for privacy leakage. Note that this set of pages cor-
responds to a much smaller set of domains, as Libert
includes multiple pages per domain in his analysis. In
contrast to this approach, we focus on performing an
internal site search directly on each domain, which re-
quires a more complex crawler to correctly locate the
search input fields. We also scan a much larger set of
domains: 1 million in all, and do not restrict ourselves
to the health and medical field.

Privacy Policies. Privacy policies provide another
way to measure the intended privacy practices of a com-
pany [34], but previous work has shown that their use-
fulness can be limited due to their complexity [62]. The
adoption of privacy policies by companies has been mea-
sured in numerous studies [38, 57, 67, 77]. Some of these
studies have focused on specific platforms (such as mo-
bile apps [78] or specific categories of web sites, such as
adult sites [72] [60]. For instance, Maris et al. used the
webXray tool to crawl and analyze 22,484 adult websites
for privacy leakages.[60] They developed a tool called
policyXray to locate privacy policy links on the pages,
looking for links with text such as “privacy” and “pri-
vacy policy”. The privacy policy text was then extracted
using Google Chrome’s Readability.js library, and its
reading difficulty and time to read was assessed. Maris
et al. also extracted any explicitly disclosed third par-
ties in the privacy policy. In this work, Maris et al. did
not try to perform a more in-depth linguistic analysis of
the extracted privacy policies. Finally, privacy policies

have also been recently analyzed automatically using
deep learning so that they can be queried by users us-
ing natural language questions [44].

Users’ Perception of Search Privacy. Many
studies have been conducted to analyze users’ percep-
tion of privacy. For instance, standardized privacy pol-
icy information formats were designed to determine
whether users would find them more useful than tradi-
tional policies [49]. However, very few have specifically
analyzed the users’ mental models of online search activ-
ity. A recent study focusing on a tracking visualization
tool [74] did find that a majority of users did not want
to have their search activity tracked, while a previous
study found that lay people had simpler mental mod-
els than technical models that omitted concepts such as
Internet levels and entities [48] (suggesting that a very
large number of users does not realize that their search
queries are shared with third parties).

7 Conclusions
In this paper, we showed how terms entered into the
internal site search feature of the Tranco top 1 million
websites are leaked to third parties, substantially com-
promising user privacy. We developed a crawler called
SlicedPie, built on top of Puppeteer, which can in-
teract with modern dynamic websites, identify search
inputs, and capture outgoing network requests. Our
crawler was able to locate an internal site search fea-
ture on 512,701 websites, and was able to successfully
execute a search for the dummy term “JELLYBEANS”
92.1% of the time.

We analyzed privacy leakage across three vectors:
(i) Referer HTTP header; (ii) URL including query pa-
rameters; (iii) request payload. We detected 81.3% of
these websites leaking the “JELLYBEANS” string to
third-party domains through at least one of these three
vectors. We released a browser extension to inform users
about potential privacy leaks via internal search, based
on our findings.

We also developed a novel technique to analyze both
P3P and natural language privacy policies and deter-
mine whether they mention sharing search terms with
third parties. We extracted privacy policies from about
50% of the websites leaking search queries, and found
that only 13% of those privacy policies explicitly men-
tioned search terms. In most privacy policies (about
75%), the sharing of information (which may include
search terms) is also described using generic wording.
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A Crawler Challenges and Edge
Cases

A.1 Interacting with the Right Inputs

As part of Stage III results, inputs not related to search
are mistakenly matched because some of their attributes
erroneously trigger our input detection query selectors.
To anticipate and minimize the impact of triggering
non-search functionalities, we interact with each input
individually (one per headless browser visit) by follow-
ing these steps: (i) detect the presence of a single in-
put element via provided query selector; (ii) focus on
the input element; (iii) type “JELLYBEANS”; (iv) wait
for 500ms; and (v) type the return key. By doing so,
we avoid interacting with non-search-related function-
alities. For example, login forms require multiple fields
to be filled out before triggering a useful action when
the enter key is hit.

A.2 Dynamically Generated Attributes

Some websites dynamically generate random attribute
names for their elements for each page visit. We detect
these cases when Stage IV yields exceptions indicating
that none of the elements collected during Stage III are
found. To address the problem, we merge both stages in
a single fallback task.

A.3 Hidden Search Inputs

Other websites do not explicitly display the search func-
tionality to visitors, in some cases input elements are
not even detectable using JavaScript. To work around
this problem, we rely on the elements previously catego-
rized as search-related (captured in Stage III ). We can
then infer from its attributes values that a search box is
likely to be made available upon click. We validate the
hypothesis by instrumenting the crawler to simulate a
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click and waiting for navigation until any elements of
type input are displayed or a timeout period is met.

A.4 Search Results Displayed Within
Another Tab

Some websites deliberately display search results within
a new browser tab. This situation requires the crawler
to specifically listen and intercept all new tab creation
events and capture any links associated with the on-
going search simulation. Whenever this happens a new
visit to the captured URL is independently performed.
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